Unimodality is a term used in several contexts in mathematics. Originally, it relates to possessing a unique mode.[1]
Contents |
In statistics, a unimodal probability distribution (or when referring to the distribution, a unimodal distribution) is a probability distribution which has a single mode. As the term "mode" has multiple meanings, so does the term "unimodal".
Strictly speaking, a mode of a discrete probability distribution is a value at which the probability mass function (pmf) takes its maximum value. In other words, it is a most likely value. A mode of a continuous probability distribution is a value at which the probability density function (pdf) attains its maximum value. Note that in both cases there can be more than one mode, since the maximum value of either the pmf or the pdf can be attained at more than one value.
If there is a single mode, the distribution function is called "unimodal". If it has more modes it is "bimodal" (2), "trimodal" (3), etc., or in general, "multimodal".[2] Figure 1 illustrates normal distributions, which are unimodal. Other examples of unimodal distributions include Cauchy distribution, Student's t-distribution and chi-squared distribution. Figure 2 illustrates a bimodal distribution.
Figure 3 illustrates a distribution which by strict definition is unimodal. However, confusingly, and mostly with continuous distributions, when a pdf function has multiple local maxima it is common to refer to all of the local maxima as modes of the distribution. Therefore, if a pdf has more than one local maximum it is referred to as multimodal. Under this common definition, Figure 3 illustrates a bimodal distribution.
Other definitions of unimodality in distribution functions also exist.
In continuous distributions, unimodality can be defined through the behavior of the cumulative distribution function (cdf).[3] If the cdf is convex for x < m and concave for x > m, then the distribution is unimodal, m being the mode. Note that under this definition the uniform distribution is unimodal,[4] as well as any other distribution in which the maximum distribution is achieved for a range of values, e.g. trapezoidal distribution. Note also that usually this definition allows for a discontinuity at the mode; usually in a continuous distribution the probability of any single value is zero, while this definition allows for a non-zero probability, or an "atom of probability", at the mode.
Criteria for unimodality can also be defined through the characteristic function of the distribution[3] or through its Laplace–Stieltjes transform.[5]
Another way to define a unimodal discrete distribution is by the occurrence of sign changes in the sequence of differences of the probabilities.[6] A discrete distribution with a probability mass function, , is called unimodal if the sequence has exactly one sign change (when zeroes don't count).
One reason for the importance of distribution unimodality is that it allows for several important results. Some examples follow.
A first important result is Gauss's inequality.[7] Gauss's inequality gives an upper bound on the probability that a value lies more than any given distance from its mode. This inequality depends on unimodality.
A second is the Vysochanskiï–Petunin inequality,[8] a refinement of the Chebyshev inequality. The Chebyshev inequality guarantees that in any probability distribution, "nearly all" the values are "close to" the mean value. The Vysochanskiï–Petunin inequality refines this to even nearer values, provided that the distribution function is unimodal. Further results were shown by Sellke & Sellke.[9]
As the term "modal" applies to data sets and probability distribution, and not in general to functions, the definitions above do not apply. The definition of "unimodal" was extended to functions of real numbers as well.
A common definition is as follows: a function f(x) is a unimodal function if for some value m , it is monotonically increasing for x ≤ m and monotonically decreasing for x ≥ m. In that case, the maximum value of f(x) is f(m) and there are no other local maxima.
Examples of unimodal functions include Quadratic polynomial functions with a negative quadratic coefficient, Tent map functions, and more.
The above is sometimes related to as "strong unimodality", from the fact that the monotonicity implied is strong monotonicity. A function f(x) is a weakly unimodal function if for some value m, it is weakly monotonically increasing for x ≤ m and weakly monotonically decreasing for x ≥ m. In that case, the maximum value f(m) can be reached for a continuous range of values of x. An example of a weakly unimodal function which is not strongly unimodal is every other row in a pascal triangle.
Depending on context, unimodal function may also refer to a function that has only one local minimum, rather than maximum.[10] For example, Local unimodal sampling, a method for doing numerical optimization, is often demonstrated with such a function. It can be said that a unimodal function under this extension is a function with a single local extremum.
One important property of unimodal functions is that the extremum can be found using search algorithms such as golden section search, ternary search or successive parabolic interpolation.
A function f(x) is "S-unimodal" if its Schwartzian derivative is negative for all .
In computational geometry if a function is unimodal it permits the design of efficient algorithms for finding the extrema of the function.[11]
A more general definition, applicable to a function f(X) of a vector variable X is that f is unimodal if there is a one to one differentiable mapping X = G(Z) such that f(G(Z)) is convex. Usually one would want G(Z) to be continuously differentiable with nonsingular Jacobian matrix.
Quasiconvex functions and quasiconcave functions extend the concept of unimodality to functions whose arguments belong to higher-dimensional Euclidean spaces.